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NOTATION

A' Incident wave amplitude

g Gravitational acceleration

,1- Body draft

I Body momenL of inertia in pitch about the center of gravity

o J01 Bessel function of the first kind of order zero

1K Wave'number, W

ky Radius of gyration, k= I/my

m Body mass

n Unit normal vector into the body

Pn f0 -H (z zG ) S(z)dz

.1.



p Pressure

Qn(k) f 0 (z - Z ) S(,z)eKz dz
-H

R(z) Sectional radius of the body

S(z) Sectional area of the body

r Polar radius, rz = x2 + y2

t 'rime

(xy, z) Cartesian coordinate system

zG Coordinate of the center of gravity

Heave displacement

i,'ree surface elevation

0 Polar coordinate

Surge displacement

p Fluid density

(I) Velocity potential

x Vertical prismatic coefficient

(1) Pitch angle

W lreq'dcncy of oscillations

iv
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ABSTRACT

A linearized theory is developed for the motions of a

slender body of levolution, with vertical axis, which is fioat-

ing in the presence of regular waves. Equations of motion

are derived which are undamped to first order in the body

diameter, but second-order damping forces are derived to

provide solutions valid at all frequencies including resonance.

Calculations made for a particular circular cylinder show

extremely stable motions except for the low frequency range

where very sharp maxima occur at resonance.
o

INTRODUCTION

The motions of a vertical body of revolution, which is floating in the

presence of waves, present a problem of interest in several connectiuns.

The motions. of a spar buoy, of a wave-height pole, and of floating rocket

vehicles arc important examples of such a problem. The same methods

develuped for these motions may be applied to find the forces acting on

offshore radar and oil-driJling structures.

A theoretical discussion of this problem, which also treats the sta-

tistical problem of motions in irregular waves, has been presented by

Barakat. I However, this analysis is restricted tothe case of a circular

cylinder and is based upon several semii-empirical concepts of applied

ship-motion theory. An alternative procedure is to formulate the (inviscid)

hydrodynamic problem as a boundary-value problem for the velocity po-

tential and to employ slender-body techniques to solve this problem. The

latter approach is followed in the present work, leading to linearized equa-

tions of motion which may be solved for an arbitrary slender body with a

vertical axis of rotational symmetry. The particular case of a circular

cylinder, whose centers of buoyancy and gravity coincide, is treated in

detail and curves are presented for the amplitudes of surge, heave, and

1 References are listed on page Z7.



pitch oscillations.

in deriving the hydrodynamic forces and moments acting on the body,

we shall assume that the incident waves and the oscillations of the body are

smnall, and thus we shall retain only terms of first order in these ampli-

tudes. We shall also assume that the body is plender. The analysis with

only first-order terms in the body's diameter leads to undamped resonance

oscillations of infinite amplitude. To analyze the motions near resonance.

it is necessary to introduce damping forces which are of second order with

respeet to the diameter-length ratio.

THE FIRST-ORDER VELOCITY PO'MOTIAto

W& shall consider the hydrodynamic probiem of a floating slender

body of revolutiorn with a verticai axis ýn the presence of small incident

surface waves., Let (x, y. z be a fixed C}artesian coordinate system with

the z-axis positive upwards and the plane z LO situated at the undisturbed

level of the t'ee surface, The x,,axis is taken to be the direction of propa-

gation of the incident waave system#, and t~e motion of the body is assurred

to be coniined tO the plane y ;7 0. We sljaU also em•p~oy a coordinate sys-

tem-i (x',y',z) fixed in the body', witth z' the axis of the body, so that with

the body, at, rest, fxy z) - kx',y' z"); and a circular rylindrical systenb

{r,0. z). where x =r cus U and y z r sin 0, If C, C,. and 4, are the instan-

"talelns alnplitudes of surge, heave, and pitch, ?espertively, eelative'to

the body•s center of gr'avity. A?, follows thar,

o C

4- 4

0 0

>e .919 q, + t7. -' CO Z' 0) 0
0 o

0 ,het'e z' isot.e vetiCal coortisae uIf the Cenler" og giavitr in the Lurdy-

o xecd system-. see Pigtre I 'The displagements •, • and pt are ass~umed

to be small uscillatory functivs of timne: w sl~all Consistectl• ;inearize

by negleeting terms ot secand orfeie tn these Ainctions ao their products

with the iacident w~awe amphit~t4e A, Thts Z qatj° 0 i 2 oTnay be replaced b?
0 0

0 0

o -

C) Co

I) C) 0Co



z 0'

S7" Z"ZG

0 Z"Z'

0

o

F~guve 1 The Coordinate Systems

()+ X" + (Z' - ZG) q)

0 z y°'4 [2]
C)

o

0

If anoideal incomrn'ess~ble Slud is assurmed. there exists a velocity

potential., t[xy,ztj,, satisfying Lapla~e's equation, suebh that its gradi-

ent is erwal to the velocity of the flugd,, This function must satisfy the
0 0 following boundary eonditionso,

0

•'1 On the body, the normal velocity coirnpGnent of the body must equal
o

the normal derivative of (,., For a body of revolution defined by the equa-
0

tidn r' =R(z), where r' + v' 2 , this boundary condition. may be

00 expressed by the equationz 0

S0

. 0 3
C.) C3



D
D- [r' - R(z')J + \7q V)[r' - R(z')] 0 0

on r' = R(z')

(2) On the free surface, the normal velocity component of the free

surface must equal the normal velocity component of the fluid particles

in this surface, and the pressure must equal atmospheric pressure. In

the linearized theory, these conditions reducea to

+ g - = 0 on z = 0, [4]

or in the case of a sinusoidal disturbance with frequency w,

K =-- 5 0 on z = 0, [5]

where K = w2/g.

(3) At infinite distance from the body, the waves generated by the body

are outgoing (the radiation condition).

The free surface condition, Equation [5], and the radiation condition

are satisfied by the potential of oscillating singularities beneath the free

surface; the boundary condition on the body may be satisfied by a proper

distribution of these singularities. This distribution may be found from

slender-body theory but some care is required in linearizing the present

problem. If r'P R (z') is the equation of the body surface over its sub-

merged length (-H < z'< (0), we shall assume that R and its first deriva-

tive are continuous, that R(-H) = 0, and that the magnitude of the slope

JdR/dz'l<< 1. The depth H is assumed finite, and it follows that R is

small of the same order. us dR/dz'. In the analysis to follow we shall

also require that R be small compared to the wavelength of the incident

wave system, or that KR << 1.

We wish to obtain the velocity potential of leading order in the sroall

parameters of slenderness and oscillation amplitudes in order to obtain a

consistent set of linearized equations of motion for the body. However,

it will turn out that the potentials of different phases of the motion are of

4



different orders of magnitude with respect to the slenderness parameter.

For example, the potential due to surge or pitch is of order R as a-1 0,

whereas the potential due to heave is O(R 2 ). Similar differences will oc-

cur in considering the components of each potential which are in phase

and out of phase with the respective velocities of the body. In order to

circumvent these difficulties without unnecessary higher order perturba-

tion analysis, we decompose the velocity potential in the following form:

S(X, y, z; t) = t (xy, z; t) + 4y(xY, z; t) + Oq%(x, y, z; t)

+ A [g/ 0eKz cos (Kx- wt)+ tA(x,y, z;t)]
o

where , and are linear in the displacements (_,t ,q) and their

time derivatives, respectively. The putential A g/w cKz cos (Kx - wt)

represents the incident wave system and the potential A 4A (x, y, z; t) re-

presents the diffracted wave potential, corresponding to waves incident

on a restrained body. Each potential c_ in Equation 161 must satisfy the

free surface boundary condition and the radiation condition; the complete

potential 4(1 mut satisfy the boundary condition on the body. This condi-

tion, Equation 131, is reduced as follows:
C

a- -I i "r' Ox- r jr ' + Or' Oz' dR 0z'
"ax' at Oy' at O,' at dz' at

0dI1 80( dR
4 0 on r' - R(z'),

Or' Ozx dz?

or neglecting second-order terms in A, , * and tIj,

a_ a_ dR j. (z- ]coo+U - d0

Or Oz -x z 0 )] +(o xcp)dR/dz 0
171

on r R(zl.

where a dot denotes differentiation with respect to time. Substituting

Equation [6] into Equation [7] and separating terms according to their

dependence on different displacements- we obtain the following boundary

conditions on the body:

5



Cr - os 0 + 0 R [8]

-5, 'z - zG) cosO0 + (RaDr (0(R( [9

-+ o(R [10]ar az • az

S- z[cos@ sin wt-(KR cos 2 +•- 1- cosotj

+4( )+ °(R 2 )

['']- =eKz - cos 0 sin cot + KR + dR + - KR cost0)coswt

ar dz

+ 0(R 4lA)+ 0(R 2 )
az

To satisfy the above boundary conditions, we employ slender-body

theory. 3 For example, the potential satisfying Equation' [8] is an axial

line of horizontal dipoles, of moment density i $ [R(z)] 2 per unit length.

Thus in an infinite fl.id,

fl•=R(z,,) ] [rZ + (z - z'])2] d- [12]

To satisfy the free surface and radiation conditions, we substitute

for the source potential [rZ + (z - Y,1 ) 2 ]-, the potential of an oscillating

source under a free surface.z With this substitut'on we obtain,, in placte

of Equation [12]:

R f- [P(zI,)] T_ (Ir + (z - zI)1]

+ {°k+K k(z +zl) J(kr)dk}dzi 1131

+ 7rwKf [R(zl)] 2 e z O-[J 0 tKr3l dz{
a 0



and, in a similar fashion,

f0 ] 2 ) - r2 . (z - z) -
N 2 7- [RG)]) (Z+- ZGt

-H

+ cOk+K ek(,+ I) j }rd Z 4+f-KeJ 0 (kr) dk dz [141

_0 ]eK(z+ zl)ra+ Vrm.K IJ f [R(zl) (zl- ZG) eK[ J0 (Kr) dzl

H a

•0 (z, {[r2 +(z - zl)]-

-H dIZ1

+ CO k+K ek(z+zl)JO(kr)dk} dz 115]
0 k-K

_0I~,'H ~ 1 dR K(Z+z 1 )
+ ro K• R(Zl) d-- e K0 (Kr) dzI

1 0 eKzKR + R cos wt
-A ?I -H dz

+ R3 sinwtx a+ 'KR4 coswt [rz + (z - zl)2]-

+ f k+K.e k(z+ zl) Jo(kr) dk}dzi [16]

-FrwoK 0 eK(z+Zzl) K.R + dR R sinwt
J- H KR+ )

- R 2 cos wt -L + ¼ KR 4 sinJt J0(Kr)dzl

where f denotes the Cauchy principal value. From the Appendix we see

that the potentials [13] to [16] satisfy the boundary conditions [8] to [111,

respectively, with a maximum fractional error of order R. Unfortunate-

ly, this error is not so small as in the classical slender-body theory for

an infinite fluid, where the error is of order R2 log R; for this reason
the present theory may not hold for as wide a range of slenderness as in

7



the aerodynamic case. However, for the slender floating bodies which

are envisaged at present (viz., a rocket vehicle or one support of a stable

platform), this is not expected to cause practical problems.
The values of the potentials [13] to [161 on the body may be found

by setting r = R(z) and retaining the leading terms for small R. To lead-

ing order, only the singular term [r 2 + (z - zl) 2 ]- contributes to the in-

tegrals over z 1 , and the integrals may be evaluated directly since for

any cojiliuuuu bounded funcliuji f (zl) and small values of r,

0 1-

0 1

f(zl) -[r + (z -z1 2 dz% = -2f(z) cos0 + 0(1)

o z 1)] -2 f(z)f f(zl) x [ + (z - z1] dz1 = -2-- cos 20 + 0(1)0I I ax2 rZ

for -H < z < 0, r << H.

Thus on the body,

• R(z) cosO + o(R 2 ) 1171

dR , 1(''z( - Z O n ()+ 0 (pZ) (18]

R (I- a•Tlog R + 0(R 2 ) [191

weKz [(1 KR + dR)R log R cos wt+ R cosO sin wt] + 0(R 2 )

Kz 1201

w eKz R cos0 sinwt + 0(R
2 log R)

8



THE FIRST-ORDER FORCES AND EQUATIONS OF MOTION

From Bernoulli's equation, the linearized pressure on the body is

p =- p- -- pgz
ata

a*• a•%• a. [OA Kz

- - pgz - p--- p A-p-5 pA +-g+e sin(KR cos O - wt)

= - pgz + p4R(z)cos0 + pýR(z)(z - aG) COsO- pAwZeKZR cos0 cos wt

+ pgAeKZ0 Ssin wt p PgAKeKzR cos 0 cos wt + O(RZ log R)

o

: -pgz + p R(z)cos S + pvR(z)(z - zG) cos C + pgAeKz sin (t

- ZpJAeKZR cos0 cos wt + 0(R- log R) [21]

The force and moment exerted on the body by the fluid are obtained

by integrating the pressure over the surface. In the absence of any other

external forces, the force or moment must equal the respective accelera.-

tion times the mass or moment of inertia of the body. Thus, with t the

unit normal vector into the body, the equations of motion are

m f f p cos(n,x)dS ['1Z]

mU + g) i .f p, cos(n, z)dS 231

fri p II a - ZQ)cos(n,xo) - x cos(n,z)] dS 1241

where m is the body's mass, I its moment of inertia about the cente-r of

gravity, and the surface integrals are over the submerged surface of the

body.

In computing the pressure integrals over the body surface, it is ex-

pedient to employ the (x', y', z') system, fixed in the body. The direction

cosines are

9



cos(n,x') = - cos 0 + 0(R 2 )

Cos(n,z' d=_mR + o(R 2 )
dz'

and the forces along the (x, z) axis are related to the forces along the

(x',z') axis by

F 2
Fx F~x, ros t•i + F z,,sin =Fx, + kb Fz, + 0 (ýj2)

Fz= Fz, cos -Fx sin =Fz Fx, + 0 (2)

Thus the equations of motion may be written in the form

m = + -i- cos 0+ pR dd

mlr+g) f .f r-d--4J ( dz'dR' 0

2 7r •* + x'LOCos 0J p ,R dz' do '

Z= 7 + [(z' - zG) cos (n, x') - x' cos(n, z')] pRdz' do'

= - 7Tf." +Xi(z'- zG) Cos 0 pRdz'dO' + 0(R 3 )

where * is the free surface elevation at the body. Substituting Equation

[211 for the pressure and neglecting second-order terms in the oscilla-

tory displacements t, r,, k, and A, we obtain

m - pg 12 ?r - cos +' + ) (z' + lk - 1. cos 0') R dz' do'

Z7r0

-p f f-0 cos O' [R cos 0' + TJiR(z ZG) cos 0'0 H

+ gAeKz' sin wt- 2w 2Ae Kz'R cos 0' cos wt] Rdz'd0'

10



- rpg 0 (R + 2•z' dR Rdz'

0

- • f H [ + z- zG) - -2AZAeKz' Cos •t] R Zdz'
H

or, since

0 R + 2 z' LI( R dRz' 0 R 2- z') dz' = 0

it follows that
00

in =- p J [0 + ;(z- zG) - ZCAeKz cos Wt] S(z) dz + O(R3 log R)

25]

where

S(z) =ir [R (z)]2

is the sectional area function.

In a similar manner we obtain

0 0

m(ý+g) -pgýS(O)+'pg S(z)dz + pgA sin wt eKz dS dz
f-0 -fT dz

+ O(R4 log R) 1261

"0
i .- -pg4 f_ (z- z() S(z)dz

-p f [ ( + (z- ZG) 2w 2AeKz cos wt] (z - zG) S (z)dz
H

+ 0(R3 log R) [27]

11



From Archimedes' principle, or equivalently, satisfying Equation

[26] to zero order in ,
0

gm pg f S(z)dz [281

and thus

mn =-pgt S(0) + pgA sin wt eKz dS dz + 0(R 4 log R) 129]
H dz

while, from Equations [28] and [25],
0

2m0 = - p LP(z - zG) - 2ZAeKz cos Wt] S(z)dz + 0(R3 log R) [30]

Let us denote:

I =mkyZ
iny

m - Vertical Prismatic Coefficient

pH S (0)

0
Pn (z- zG) S(z)dz (n = 1,Z)

0

OQ1 (K) - P eKz (z - zG)n S(z)dz (n = 0, 1)m OH

and note that ,, , and y must be sinusoidal with frequency w. The

equations of motion then become

2± + Pj - 2AQ 0 cos Wt [31]

(1 - XKH)= A(l - XKHQ 0 ) sin wt [32]

P2 + ky - ) • + P1 • = - 2AQ 1 cos cwt [331

12



Note also that surge and pitch are coupled, unless P 1 =.0 or unless

the centers of gravity and buoyancy coincide.

The above equations of motion are not unexpected. The restoring

forces on the left-hand side consist of hydrostatic and inertial forces plus

entrained mass terms which double the inertial force at each section.

This might have been deduced as a consequence of slender-body theory

and the fact that the entrained mass of a circular cylinder in an infinite

fluid is just equal to the displaced mr.;s. Tn other words, the Ihydrmdynam-

ic forces on the left-hand side of Equations [31] to [33] could have been

obtained by neglecting the presence of the free surface. Moreover, the

exciting forces on the right-hand side of these equations are those which

follow from the "Froude-Krylov" hypothesis that the pressure in the wave

system is not affected by the presence of the body. These results are, of

course, a consequence of the fact that the body is slender.

The solutions of Equations [31] to [33] are

= A sin wt I -XQKH ) 34]

P1Q1 Q0(P2 +y IK

= 2 A cos wOt ..-. . + - .. 135]
2(1- + k2 PI/K) - Pl2

,- 2A cos ,t P - - p] 136]
2,P,+ k2 - P/)P

We note that when

K [371
XH

there is resonance in heave, and when

P1
K P [38]

32 + ky

1.3



there is r.-sonance in pitch and surge. To determine the oscillation am-

plitudes in the vicinity of these resonance frequencies. it is necessary to

consider the damping mechanism due to energy dissipation in outgoing

waves. Thus, for these frequencies, we must consider the free-surface

effects on the restoring forces. For this purpose we must retain some

terms which are of second ordei in the radius of the body.

THE DAMPING FORCES

The damping forces will follow by considering the last terms in

Equations [13] to [16] and will consequently be of higher order in R than

those terms which we retained in the previous analysis. This procedure

is nevertheless consistent, since at resonance the lower order restoring

forces vanish. In other words, we are retaining the lowest order force

or moment of each phase separately. For a further discussion of this

point, see Reference 4.

We proceed, therefore, to study the damping forces, or the forces

in phase with each velocity. The only contribution from Equations [13]

to [16] is the potential

r 7rKeKZ R fl + [4 +LP(z - zG)]R2 2 } eKzl J0 (Kr)dzI

f39]

Since J 0 (Kr) = 1 - (Kr) 2 + ... it follows that on the surface r = R(z),

the leading terms are

J0 (Kr) I

and

- J 0 (Kr) - ½K~ x = -X K 2 R-cos 0

Thus, to second order in R the damping potential on the body is

14



Kz 0 R dR

f-H dz,

R+ ý (-l z G)l K2 R(z)RZ(zl) Cos 0 1 C Kz I dzl

Kzý Kz, dS 401
-f w Ke e - dzi

OH dzi

co K3 R (z) cos 0 eKz 0 [ý + ý(zj - zG)l e Kzj S(zl) dzl
H

The damping pressure on the body is

I Kz' 0 Kz dS
p P - -1 -pKe e I - dzi

-H dz,
41]

+ 3 Kz 0 Kz
wp K R (z) cos 0 c + zC,)] e S(zl) dzl

H

Then the heave darnping force is

F* .,o 2 7r p*R -ýR- do dz wp K f 0 eKz -d S dz) 2 [4Z]
z J-H fO' dz ? dz

Similarey, the surge damping force and the pitch damping moment are

0 27
F* p * cos 0 RdO dz

x f-H f 0 1431

1 3 0 Kz dz + Kz S(z I) dzWpK S(z) e f-0 t Oz, zG)l e
H H

and

15



= - f 1,7r - z )cos 0R dOdz
yi Go

1 -pi 3 (f (zzGS ze' dz44]

( f0  ~ + -zG~leK S(z,) dzi)

or in terms of the integrals P 1 , P 2 , Q 0 , and '-'l

F -wpKý[K- QO(K) - 2(~

1 mzK 2[ 45]

? PXrH 1 - oQ0 (K) XKH]

F= rn K3 QO(K) [ýQO(K) + pQj(K)] [ 46]1

__y 2 - K Q1 (K[ýQ O(K) +ýQ 1 (K)] [ 471

In place of Equations [31] [32] and [331 , vie obtain the damped equa -

tions of motion

Zý Pqj- 2AQ0 (K) cos wt

+ I rn. 3~()[ QO(K) + ýQ,(K)] 18
2 co K 1OK [

(1 - =K-1 A sin wt [1 - XKH Q 0 (K)]

+__ Ký, [1 - QO(K)XKH]Z [9

4(P 2 -P 1 /K k 2 ) + P1  ZA Q(K) cos wt

+ p K~ Q(K) [ýQ 0 (K) + -jQ,(K)1 o

16



The damping terms of these equations of motion are given by the terms

linear in the velocities 4, , and 4. It should be noted that for a slender-

body rn - 0, and thus the damping coefficients will be small, as was to be

expected. To solve these equations for the three unknown displacements

and their phases is a straightforward but tedious matter. For applications

in ranges not including a resonance frequency, it is much simpler to em-

ploy the undamped equations of motion, [31] to [33], and the resulting

displacements, [.34] to 136].

CALCULATIONS FOR THE CIRCULAR CYLINDER

As a special case, we shall consider the circular cylinder R(z) = R

= constant. Then

X = 1.0

A fJ -H

P-I f z 2d H2+

1_ = 1 -KH

Q ( ) 1 0 eKz. dz I-(I e- e H

1 AJ eKZ(z- zo)da -K - - H e )(l+ )

Q1 (K) 0 H - e KzH (1 ZG z 1e-K- - - e P)( + KZG

We shall assume, nioreover, that the centers of buoyancy and gravity co-

incide, or zG = - H/2, so that the equations of motion are uncoupled and

there is no resonance in pitch or surge.

Then

1- 1 , e-KII -- KH
P 1 =00 P 2 = 12 = 2K K 2 H
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and it follows that

A (C-KH)cos Wt [51]

ZA cos Wt + e-KH I - e[K5

H 2KA e-K]KH

R ZKeK 2[ji - KH) sin wt

(1 -KH) 2 + .1 H (L e2K]

[53]

Plots of the above amplitudes and the heave phase angle are shown

in Figures 2 to 6 as functions of KH. Figure 2 shows the ratio of surge

amplitude to wave amplitude. For zero frequency this ratio is one and

for increasing frequencies it decreases monotonically to zero. Figure 3

shows the ratio of pitch angle to the maximum wave slope KA, multiplied

by the coefficient C - + 6(ky/H) 2 . This coefficient is equal to one if the

mass in the cylinder is uniformly distributed throughout its submerged

length. The ratio starts at one for zero frequency and decreases mnono-

tonically to zero. Thus the pitch amplitude is always less than the wave

slope. Figure 4 shows the ratio of heave amplitude to wave height for

frequencies away from the vicinity of resonance. Near resonance, the

amplitude is shown in Figure 5 and the phase angle in Figure 6 for the

particular case Rl/H = 0. 1. The ratio of heave amplitude to wave ampli-

tude is unity for zero frequency, rises to a maximum of

2 2

at the resonance frequency KH = 1, and then decreases monotonically to

zero. The phase angle is similar to conventional one-degree-of-freedom
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harmonic oscillators with linear damping; for low frequencies the heave

displacement and wave height are in phase, at resonance they are in quad-

irature, and at high frequencies they are 180 deg out of phase.

DISCUSSION AND CONCLUSIONS

The damped equations of motion as given by Equations [48] to [50]

may be solved for an arbitrary body of revolution to obtain the oscillation

amplitudes and phases. Except in the vicinity of the resonance frequencies

defined by Equations [37] and [38], it should be sufficient to use the sim-

pler undamped equations; the resulting oscillations are given by Equations

[34] to [36]. Plots of these oscillations are shown in Figures 2 to 6 for

a circular cylinder, with the important restriction that the centers of buoy-

ancy and gravity coincide. If this restriction is relaxed, a resonance will

be introduced into the equations for pitch and surge, but the frequency of

this resonance may be kept small by ballasting. The amplitudes at reso-

nance are extreme, but the resonance frequency for heave is quil sm.all

and can be kept out of the practical range of ocean waves by making the
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draft sufficiently large. It would seem wise to rio this in practice and to

provide appropriate ballast so that the pitch resonince occurs at or below

the heave resonance frequency. From Equations [371 and [38] this re-

quires that

P1

P +k 2  yi2 y 21P ×

The advantage of spar-buoy-type bodies lies in their very small

motions in the higher frequency range. By proper design this advantage

may be utilized; thus very calm motions can be expected in waves.
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-APPENDIX

Here the potentials , +, , and 4A' defined by Equations [13]

to [16], are shown to satisfy the boundary conditions [8] to [11], re.spec-

tively, to leading order in R. For this purpose, let us consider the po-

tential

0 Bf(z!,t) f +¢ = ½ fI,[r2 + (Z - Zl)]-

IH

#0 k+ ek(Z+Zl) J 0 (kr)ak} dz 1  [54]

+ ir0K f(z 1 ,t) Ke~ 1 Jo0 (Kr) dZ1

where f(z 1 ,t) has sinusoidal time dependence with circular frequency w.

By appropriate choice of the function f, the potentials , PS I P , and

ýA can all be obtained from qP and OLp/Ox. Thus it is sufficient to estab-

lish that the following conditici-., are satisfied on the body surface r =R:

3•0+ 1 i f(z,t) [55]

Or - R dt

82 _ cos 0 [56]
Or ax R 2  57t

Employing an alternative form of the source potential,2 we write L

in the form

0 [ - 1)2 ] r - + ( z - Z + [ t z + ( z + z , ) ]

f H}a
+ 2K I ek(Z+Zl) JO(kr)dk dzi

23571
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+0 r u5 + -H f(z 1 9 t) eK(Z+Zi) J 0 (Kr)dZ1  continued

a+

where

I-= ½ - {[r+(z- z)2]-+ [rZ +(z, +z) dI i

q2-K 0 tf I - ek(Z±l) JO(kr)dkdziPH Ot k-

ffwK fiH f(zlt) eJ (Kr)ddz

The potential biý corresponds to an axial distribution of simple sources

together with an image distribution above the free surface z = 0. To

emphasize this fact we write qjl in the form

H
* f = £ .b-f(- zlI't)[r + (z- dz1  158]

From the conventional slender-body theory of aerodynamics, we may ex-

pect this potential to satisfy the boundary conditions [55] and [56] on the

body to leading order in R. In fact, differentiating with aspect to r and

neglecting terms which are of order RZ or R cos 0 in the neighborhood

of the body r R, we have

fI _ H f( izI t) r [r 2 + ("a- z'

ar -H at

a0 H 1S- i 5 -f(-Izjt) H r [r 2 + (z - Zl)] dz 1  1591
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raf _ _ _ - _ _ II [59]
ati continiid

r r 2 + (z- z 2

1 of

r at

and similarly

82 41 Cos 0 Of•O [601
Or Dx r 2  at

Thus on the body the potential 4 satisfies the conditions [55] and [56] to

leading order in R. To establish that the same is true of LIJ, we now show

that the contributions from qj2 and 8•P/ax -- e of higher order in R.

Since

- J(kr) = -kJl(kr)

it follows that

84f2 0 Of f ek(Zk ZI+rdl)=* -K -F 4 ---_. K ej, (kr)dk dz1l
Or atH -0 k-K

[611

+ 7rK 2  OH f(zlt) cK(z+zl) J1 (Kr)dz6

We wish to show that

J4
2

- o (f)
Or

and

Or8x R5
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as R- 0, and thus that

OPz a~ al2 a2 z
-< and

ar ar ar ax Or Dx

for R/H << I. From the series expansion of the Bessel function,

J (kr) -kr + 0(k 3 r 3 )

and thus, where this expansion is permissible in Equation [61], the re-

sulting terms are clearly of order fK. However, in the neighborhood of

z = 0, the power series expansion is not permissible in the integral over

k. It follows that, in the neighborhood of r = R,

aPz, K af(0,t) 0 rO k kz1
_r__t__ k - K e J(kr~dkdzl

Dr at f- -O -K

+ 0(fR)

af (0, t)m
tK k-K iJl (kr',dk

K af(0, t) cc Jl(kr)S-K t--- -- dk
at 0o

af(0,t)
at

Similarly,

ar 8x P

Thus, onethe body,

a LP2 q lS=0O(R

ar \ ar1

Z6



and

a22 0(R a

r axrax

Therefore, the potential q, satisfies the conditions [551 and [56] with a

fractional error of order R.
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